Class 11 Physics MCQs | Chapter 10: Mechanical Properties of Fluids – Part 4 (Board Exam Q&A)

Timer: Off
Random: Off

301. A steel ball of radius $2 \, \text{mm}$ is dropped in oil of viscosity $0.6 \, \text{Pa·s}$. If densities of steel and oil are $7800 \, \text{kg/m}^3$ and $900 \, \text{kg/m}^3$, calculate its terminal velocity. ($ g = 9.8 \, \text{m/s}^2$)
ⓐ. 0.10 m/s
ⓑ. 0.15 m/s
ⓒ. 0.20 m/s
ⓓ. 0.25 m/s
302. A raindrop of radius $0.5 \, mm$ falls through air ($ \eta = 1.8 \times 10^{-5} \, Pa·s$, $\rho_{air} = 1.2 \, kg/m^3$). If water density is $1000 \, kg/m^3$, find its terminal velocity.
ⓐ. 3 m/s
ⓑ. 5 m/s
ⓒ. 7 m/s
ⓓ. 9 m/s
303. A small ball of radius $0.001 \, m$ has a terminal velocity of $0.02 \, m/s$ in a liquid of viscosity $0.4 \, Pa·s$. If density of liquid = $1200 \, kg/m^3$, calculate density of the ball.
ⓐ. 1250 $kg/m^3$
ⓑ. 1300 $kg/m^3$
ⓒ. 1400 $kg/m^3$
ⓓ. 1500 $kg/m^3$
304. A lead sphere of radius $1.5 \, mm$ is falling in glycerin of viscosity $1.5 \, Pa·s$. If lead density = $11300 \, kg/m^3$ and glycerin density = $1260 \, kg/m^3$, find terminal velocity.
ⓐ. 0.10 m/s
ⓑ. 0.15 m/s
ⓒ. 0.20 m/s
ⓓ. 0.25 m/s
305. A pollen grain of radius $2 \times 10^{-6} \, m$ is falling in air ($ \eta = 1.8 \times 10^{-5} \, Pa·s, \rho_{air} = 1.2 \, kg/m^3$). If density of pollen = $900 \, kg/m^3$, calculate terminal velocity.
ⓐ. $1.2 \times 10^{-6} \, m/s$
ⓑ. $2.0 \times 10^{-6} \, m/s$
ⓒ. $3.0 \times 10^{-6} \, m/s$
ⓓ. $4.0 \times 10^{-6} \, m/s$
306. A ball of radius $3 \, mm$ falls through oil of viscosity $0.7 \, Pa·s$ with density difference $2000 \, kg/m^3$. Calculate terminal velocity.
ⓐ. 0.05 m/s
ⓑ. 0.10 m/s
ⓒ. 0.20 m/s
ⓓ. 0.30 m/s
307. A small sphere of radius $0.0005 \, m$ falls in a liquid of viscosity $0.25 \, Pa·s$. If terminal velocity is $0.015 \, m/s$ and density of liquid = $1000 \, kg/m^3$, calculate density of the sphere.
ⓐ. 1100 $kg/m^3$
ⓑ. 1200 $kg/m^3$
ⓒ. 1250 $kg/m^3$
ⓓ. 1300 $kg/m^3$
308. A steel ball of radius $0.004 \, m$ falls in oil of viscosity $0.8 \, Pa·s$. If density difference is $7000 \, kg/m^3$, calculate its terminal velocity.
ⓐ. 0.25 m/s
ⓑ. 0.50 m/s
ⓒ. 0.75 m/s
ⓓ. 1.0 m/s
309. A ball of radius $0.001 \, m$ falls in glycerin ($ \eta = 1.0 \, Pa·s$, $\rho_f = 1260 \, kg/m^3$). If terminal velocity is found to be $0.015 \, m/s$, calculate the density of the ball.
ⓐ. 1400 $kg/m^3$
ⓑ. 1500 $kg/m^3$
ⓒ. 1600 $kg/m^3$
ⓓ. 1700 $kg/m^3$
310. A particle of radius $0.002 \, m$ falls in a fluid of viscosity $0.2 \, Pa·s$. If density difference = $1000 \, kg/m^3$, calculate its terminal velocity.
ⓐ. 0.004 m/s
ⓑ. 0.008 m/s
ⓒ. 0.009 m/s
ⓓ. 0.010 m/s
Subscribe
Notify of
guest
0 Comments
Inline Feedbacks
View all comments
Scroll to Top