Class 11 Physics MCQs | Chapter 9: Mechanical Properties of Solids – Part 6 (Important MCQs for Exams)

Timer: Off
Random: Off

501. A steel wire of length $2 \, m$ and cross-sectional area $1 \, mm^2$ is stretched under a load of $200 \, N$. If Young’s modulus of steel is $2 \times 10^{11} \, Pa$, what is the extension produced?
ⓐ. $2 \, mm$
ⓑ. $1 \, mm$
ⓒ. $0.2 \, mm$
ⓓ. $0.02 \, mm$
502. A wire of original length $L = 1.5 \, m$ and diameter $1 \, mm$ is stretched by $1.5 \, mm$ under a load of $30 \, N$. Calculate Young’s modulus.
ⓐ. $2.55 \times 10^{10} \, Pa$
ⓑ. $3.82 \times 10^{10} \, Pa$
ⓒ. $5.10 \times 10^{10} \, Pa$
ⓓ. $7.64 \times 10^{10} \, Pa$
503. A steel wire of length $2 \, m$ and radius $0.5 \, mm$ is fixed at one end. A load of $100 \, N$ is applied at the free end. If the elongation is $0.2 \, mm$, calculate Young’s modulus.
ⓐ. $2.55 \times 10^{10} \, Pa$
ⓑ. $2.55 \times 10^{12} \, Pa$
ⓒ. $3.82 \times 10^{11} \, Pa$
ⓓ. $1.27 \times 10^{12} \, Pa$
504. A wire is stretched by $1 \, mm$ when a load of $20 \, N$ is applied. If the same wire is stretched by $2 \, mm$, what load is required, assuming Hooke’s law holds?
ⓐ. $20 \, N$
ⓑ. $30 \, N$
ⓒ. $40 \, N$
ⓓ. $80 \, N$
505. A steel rod of cross-sectional area $1 \, cm^2$ is subjected to tensile stress of $2 \times 10^7 \, N/m^2$. If Young’s modulus of steel is $2 \times 10^{11} \, Pa$, find elongation of the rod of length $2 \, m$.
ⓐ. $0.002 \, mm$
ⓑ. $0.02 \, mm$
ⓒ. $0.2 \, mm$
ⓓ. $2 \, mm$
506. Two wires of same material and length but radii in ratio 1:2 are stretched by same load. What is the ratio of their elongations?
ⓐ. 3:4
ⓑ. 4:1
ⓒ. 4:3
ⓓ. 1:4
507. A steel wire and a copper wire of same length and cross-sectional area are joined end to end and stretched by 100 N. If Young’s modulus of steel = $2 \times 10^{11} \, Pa$ and copper = $1 \times 10^{11} \, Pa$, ratio of elongations of steel to copper is:
ⓐ. 1:2
ⓑ. 2:1
ⓒ. 1:1
ⓓ. 4:1
508. A rod of length $1 \, m$ and cross-sectional area $1 \, cm^2$ is subjected to tensile force of $1000 \, N$. If Young’s modulus is $2 \times 10^{11} \, Pa$, calculate extension.
ⓐ. $0.0005 \, mm$
ⓑ. $0.005 \, mm$
ⓒ. $0.05 \, mm$
ⓓ. $0.5 \, mm$
509. A wire of length $2.5 \, m$ and area $1 \, mm^2$ is subjected to a force of $50 \, N$. If elongation is $0.25 \, mm$, calculate Young’s modulus.
ⓐ. $1 \times 10^{10} \, Pa$
ⓑ. $2 \times 10^{10} \, Pa$
ⓒ. $2 \times 10^{11} \, Pa$
ⓓ. $5 \times 10^{11} \, Pa$
510. A steel rod of length $2 \, m$ and cross-sectional area $1 \, cm^2$ is subjected to a tensile force of $20 \, kN$. If elongation is $1 \, mm$, find Young’s modulus.
ⓐ. $2 \times 10^{10} \, Pa$
ⓑ. $4 \times 10^{13} \, Pa$
ⓒ. $4 \times 10^{11} \, Pa$
ⓓ. $4 \times 10^{9} \, Pa$
Subscribe
Notify of
guest
0 Comments
Inline Feedbacks
View all comments
Scroll to Top