Class 11 Physics MCQs | Chapter 14: Oscillations – Part 5 (MCQs for Competitive Exams)

Timer: Off
Random: Off

401. The principle behind quartz crystal oscillators in communication systems is
ⓐ. Magnetic resonance
ⓑ. Piezoelectric resonance
ⓒ. Electrical damping
ⓓ. Gravitational force
402. Which of the following is the standard differential equation of motion for a simple harmonic oscillator?
ⓐ. $\dfrac{d^2x}{dt^2} + \omega^2 x = 0$
ⓑ. $\dfrac{dx}{dt} + \omega x = 0$
ⓒ. $m\dfrac{dx}{dt} + kx = 0$
ⓓ. $\dfrac{d^2x}{dt^2} + k = 0$
403. For a mass-spring system, Newton’s 2nd law gives the differential equation
ⓐ. $m\dfrac{d^2x}{dt^2} + kx = 0$
ⓑ. $m\dfrac{dx}{dt} + kx = 0$
ⓒ. $\dfrac{dx}{dt} + k = 0$
ⓓ. $m\dfrac{d^2x}{dt^2} = k$
404. What is the general solution of $\dfrac{d^2x}{dt^2} + \omega^2 x = 0$?
ⓐ. $x(t) = Ae^{\omega t}$
ⓑ. $x(t) = A\cos(\omega t) + B\sin(\omega t)$
ⓒ. $x(t) = At + B$
ⓓ. $x(t) = A\omega t$
405. A mass $m = 0.5 \,\text{kg}$ attached to a spring $k = 200 \,\text{N/m}$ satisfies the equation $m\ddot{x} + kx = 0$. Find the angular frequency.
ⓐ. 10 rad/s
ⓑ. 15 rad/s
ⓒ. 20 rad/s
ⓓ. 25 rad/s
406. The damped harmonic oscillator equation is
ⓐ. $m\ddot{x} + b\dot{x} + kx = 0$
ⓑ. $m\ddot{x} + kx = 0$
ⓒ. $m\ddot{x} + F = 0$
ⓓ. $\ddot{x} + \omega x = 0$
407. For the damped equation $m\ddot{x} + b\dot{x} + kx = 0$, the discriminant condition $b^2 - 4mk < 0$ corresponds to
ⓐ. Underdamped oscillations
ⓑ. Critical damping
ⓒ. Overdamping
ⓓ. No motion
408. Write the equation of motion for a forced damped oscillator with driving force $F_0\cos(\omega t)$.
ⓐ. $m\ddot{x} + kx = F_0\cos(\omega t)$
ⓑ. $m\ddot{x} + b\dot{x} + kx = F_0\cos(\omega t)$
ⓒ. $m\ddot{x} + b\dot{x} = 0$
ⓓ. $m\ddot{x} + kx = 0$
409. Solve $\ddot{x} + 9x = 0$ for initial conditions $x(0) = 2, \dot{x}(0) = 0$.
ⓐ. $x(t) = 2\cos(3t)$
ⓑ. $x(t) = 2\sin(3t)$
ⓒ. $x(t) = 2e^{3t}$
ⓓ. $x(t) = 2t$
410. The energy of an oscillator described by $m\ddot{x} + kx = 0$ is
ⓐ. $E = \tfrac{1}{2}kx^2$
ⓑ. $E = \tfrac{1}{2}mv^2$
ⓒ. $E = \tfrac{1}{2}mv^2 + \tfrac{1}{2}kx^2$
ⓓ. $E = kxv$

Subscribe
Notify of
guest
0 Comments
Inline Feedbacks
View all comments
Scroll to Top